
TWMS J. Pure Appl. Math., V.5, N.1, 2014, pp.36-42

EXISTENCE AND UNIQUENESS OF SOLUTION OF NONSTATIONARY
BOLTZMANN’S MOMENT SYSTEM EQUATIONS IN THIRD

APPROXIMATION

A. SAKABEKOV1, E. AUZHANI1

Abstract. In the article it is proved the existence and uniqueness of the solution of the ini-

tial and boundary value problem for the nonstationary nonlinear one-dimensional Boltzmann’s

moment system equations in third approximation in space of functions, continuous in time and

square summable by spatial variable.
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1. Introduction

In case of one-atom gas any macroscopical system in the process of its evolution to an equi-
librium state passes 3 stages: initial transition period – described in terms of full function
distribution of system, the kinetic period – by means of one-partial distribution function, the
hydrodynamic period – by means of the five first moments of distribution function. Boltz-
mann’s moment system equations are intermediate between kinetic and hydrodynamic levels of
the description of the state of the rarefied gas. These five equations form non closed system, as
contain 13 unknowns. To close this system of equations we may express stress tenzor and heat
flux through pressure, temperature and so on. Thus, from the equations corresponding to above
mentioned laws it is possible to receive Euler’s equations, Navier-Stokes equations, Burnett equa-
tions and others. In general, the solution of any problem for nonlinear Boltzmann’s moment
system equations presents more complexity than the solution of Navier-Stokes equations.

An approximation strategy in kinetic theory is given by Grad’s [3] moment method based on
Hilbert expansion of the distribution function in Hermite polynomials. The method is described
in Grad (1949) [3]. Differential part of Grad’s system contains as coefficients such unknown
hydro-dynamical parameters like density, temperature, average speed. The statement of bound-
ary value problems for Grad’s system became difficult.

In works [1], [12] there had been received the moment systems for spatially-homogeneous
Boltzmann equation, and the conditions of representability of solution of the spatially-homoge-
neous Boltzmann equation in form of Henri Poincare series. Let us notice that the method
offered in work [1] (application of the Fourier transform on a velocity variable in an isotropic
case) had strongly simplified the integral of collisions and, hence, calculation of the moments
from integral of collisions. In work [12] had been generalized the results of work [1] for a case of
anisotropic dispersion.
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In work [9] had been received the system of moment equations for the spatially-non- homoge-
neous Boltzmann equation, which is distinct from Grad’s system, by expansion of distribution
function of particles by eigenfunctions of the linearized collision operator. Thus the differential
part of the moment system has appeared to be linear, and the moments of the nonlinear collision
operator are sign-non-defined square forms.

In work [10] it is proved the existence of the global solution in time of the initial and boundary
value problem for one-dimensional nonlinear Boltzmann’s moment system equations in second
approximation in space of functions, continuous in time and summable by spatial variable, more
exactly, in space of functions C

(
[0, T ] ; L1lnL1

)
. Furthermore, essentially had been used some

inner properties, inherent to the system of moment equations in second approximation, namely
analogues of mass conservation law and Boltzmann’s H-theorem. Therefore studying of an
initial or initial-boundary value problem for each approximation of Boltzmann’s moment system
equations represents the big interest.

In this article we consider the initial and boundary value problem for one-dimensional non-
stationary nonlinear Boltzmann’s moment system equations in third approximation and prove
the existence of the solution in space of functions, continuous in time and square summable by
spatial variable.

2. Initial and boundary value problem for the nonstationary nonlinear

onedimensional Boltzmann’s moment system equations in third approximation

We consider one-dimensional nonstationary nonlinear Boltzmann’s moment system equations
in k-th approximation [8]
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2n + l = 0, 1, . . . , k,

where Inl are the moments of nonlinear collision operator which expressed in terms of coefficients
of Talmi and Klebsh-Gordon [5], [6], and have the form

Inl =
∑

〈N3L3n3l3 : l/nloo : l〉 〈N3L3n3l3 : l/n1l1n2l2 : l〉 (l1ol2o/lo) V (l3)ϕn1,l1ϕn2,l2 .

For generalized coefficients of Talmi exists a table [5] for each value of quantum number
ξ = 2n + l from 0 to 6. Moreover, it is been created the program on IBM for calculation of
generalized coefficients of Talmi.

If in (1) 2n+l takes values from 0 to 3, then we get the Boltzmann’s moment system equations
in third approximation. We write Boltzmann’s moment system equations in third approximation
in an expanded form
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σ0,σ1, σ2,σ3 are constants.
First, third and fourth equations of the system (2) correspond to the mass conservation law,

momentum conservation law and energy conservation law correspondingly.
We introduce following vectors and matrices
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,

Λ = diag (0, −λ02, 0, 0,−λ03,−λ11) ,

I(U,U) = (0, I02, 0, 0, I03, I11)
′ .

We write the system of equations (2) in vector-matrix form
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Let’s consider the vector
ψ = (ψ1, ψ2, ψ3, ψ4, ψ5, ψ6)′.

We denote as B the matrix, columns of which form the eigenvectors of matrix A. System of
equations (3) in canonical view we write as
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x ∈ [−a; a], t > 0, (4)

where U = Bψ, and J02 (ψ,ψ) , J03 (ψ, ψ) , J11 (ψ,ψ) are square forms, in which instead of U
we set ψ.

System of equations (4) is the nonlinear hyperbolic system of equations.
Let’s set the following initial and boundary conditions for the system of equations (4):

ψi (0, x) = ψ0
i (x) , x ∈ [−a; a] , i = 1, 6 (5)

ψi (t,−a) = ψi (t, a) , i = 1, 6, t > 0. (6)
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the vector of square forms.
We rewrite initial and boundary value problem (4)-(6) in the form
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ψ (t,−a) = ψ (t, a) . (9)

For the problem (7)-(9) we have following theorem.

Theorem 2.1. If ψ0 ∈ L2 [−a; a], then there exists such a T , that the problem (7)-(9) has in
the domain [0,T]x[−a; a] a unique solution belonging to C
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)
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)
.
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Proof. Let ψ0 ∈ L2 [−a; a]. We prove (10). We take the inner product of both sides of (7) with
ψ and integrate over [−a; a]:
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)
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is bounded. Hence ∀t ∈ [0, T ] takes place a priori estimation (10).
Now we prove the existence of a solution of (7)-(9) with the help of Galerkin method. Let

us {ωl(x)}∞l=1 be a basis in the space L2 [−a; a], where dimension of vector ωl(x) is equal to
dimension of vector ψ. For each m we define an approximate solution ψm of (7)-(9) as follows:
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where ψ0m is the orthogonal projection in L2 of the function ψ0 on the subspace, spanned by
ω1, . . . ωm. The coefficients clm(t) are determined from the equations

m∑
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where dim is the i-th component of ψ0m.
We multiply (15) by cim (t) and sum over i from 1 to m:
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With the help of the above arguments we now prove that rm(t), where ψm (t, x) = rm(t)ωm (t, x),
is bounded in some time interval [0, Tm], Tm ≈ O

(
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)
, Tm ≥ T ∀m, and

‖ψm‖C([0,T ];L2[−a;a]) ≤ C2‖ψ0m‖L2[−a;a] ≤ C2‖ψ0‖L2[−a;a], (19)

where C2 is constant and independent of m.
Then solvability of system equations (14)-(16) or (17)-(18) follows from estimation (19).
Thus, the sequence {ψm} of approximate solutions of the problem (7)-(9) is uniformly bounded

in C
(
[0, T ] ; L2 [−a; a]

)
. Moreover, homogeneous system of equations τE + Dξ with respect to

τ, ξ has only trivial solution. Then it follows from results in [11], that ψm → ψ is weak in
C

(
[0, T ] ; L2 [−a; a]

)
and J(ψm,ψm) → J(ψ, ψ) is weak in C

(
[0, T ] ; L2 [−a; a]

)
as m → ∞.

Further, it can be shown by the standard method that the limit element is a weak solution of
the problem (7)-(9).

The theorem is proved. ¤

3. Conclusion

We proved the existence and uniqueness of the local solution of the initial and boundary value
problem for the nonstationary nonlinear one-dimensional Boltzmann’s moment system equations
in third approximation. Interval of time, in which exists the solution of the problem depends
on the norm of a vector of initial functions. If the norm of a vector of initial functions is small
value then the interval of time in which exists the solution of the problem becomes large.
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